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Abstract
In this paper, we review the method of constructing integrable deformations of
the compactified c = 1 bosonic string theory by primary fields (momentum or
winding modes), developed recently in collaboration with S Alexandrov and
V Kazakov. The method is based on the formulation of the string theory as
a matrix model. The flows generated by either momentum or winding modes
(but not both) are integrable and satisfy the Toda lattice hierarchy.

PACS numbers: 02.30.Ik, 02.10.Yn, 11.25.−w

1. Introduction

The c = 1 string theory (the theory of random surfaces embedded in one dimension) can be
constructed as the collective theory for a one-dimensional N × N Hermitian matrix field [1].
The U(N)-invariant sector of the matrix model is described by a non-relativistic quantum
mechanics of free fermions in an upside-down quadratic potential. The mapping to free
fermions allows us to calculate virtually any quantity in the string theory in all orders in the
genus expansion.

The elementary excitations of the c = 1 string represent collective excitations of free
fermions. The tree-level S-matrix can be extracted by considering the propagation of ‘pulses’
along the Fermi sea and their reflection off the ‘Liouville wall’ [2].

The exact non-perturbativeS-matrix has been calculated by Moore et al [3]. Each S-matrix
element can be associated with a single fermionic loop with a number of external lines. One
can then expect that the theory is also solvable in a nontrivial, time-dependent background
generated by a finite tachyonic source. Dijkgraaf et al [4] demonstrated that this is indeed the
case when the allowed momenta form a lattice as in the case of the compactified Euclidean
theory. In [4] it has been shown that the string theory compactified at any radius R possesses
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the integrable structure of the Toda lattice hierarchy [5]. The operators associated with the
momentum modes in the string theory have been interpreted in [4] as Toda flows.

The explicit construction of these Toda flows is an interesting and potentially important
task, because this would allow us to explore the time-dependent string backgrounds. This
problem was recently solved in [6]. The method used in [6] is conceptually similar to the
method of orthogonal polynomials of Dyson–Mehta in the interpretation of Douglas [7], which
has been used to solve the c < 1 matrix models [8, 9]. The construction of [6] allows us
to evaluate the partition function of the string theory in the presence of finite perturbation
by momentum modes. The simplest case of such a perturbation is the sine-Liouville string
theory2.

Besides the momentum modes, the compactified string theory contains a second type of
excitations associated with nontrivial windings around the target circle. In the worldsheet
description, the string theory represents a compactified Gaussian field coupled to 2D quantum
gravity. Then the momentum and winding modes are the electric and magnetic operators for
this Gaussian field. It is known [11, 12] that the winding modes propagate in the non-singlet
sector of the c = 1 matrix model, which is no more equivalent to a system of fermions.
Explicit realization of the winding modes can be given by gauging the compactified matrix
model. Then the winding modes are realized as the Polyakov loops winding around the
Euclidean time interval [13].

The electric and magnetic operators are exchanged by the usual electric-magnetic duality
R → 1/R also called T-duality. If the momentum modes of the compactified string theory are
described by the Toda integrable flows, then by T-duality the same is true also for the winding
modes. A direct proof is presented in [13], where it is also shown that the grand canonical
partition function of the matrix model perturbed by only winding modes is a τ -function of the
Toda lattice hierarchy. Applying the T-duality backwards, we conclude that the same is true
for the partition function of the theory perturbed by only momentum modes.

A special case represents that the theory is compactified at the self-dual radius R = 1, it
is equivalent to a topological theory that computes the Euler characteristic of the moduli space
of Riemann surfaces [14]. When R = 1 and only in this case, the partition function of the
string theory has alternative realization as a Kontsevich-type model [4, 15].

In this paper, we summarize the results concerning the Toda integrable structure of the
compactified c = 1 string theory obtained in [6, 13, 16, 17]. We will follow mostly [6], but
will present the construction in the framework of the Euclidean compactified theory, while [6]
discussed the theory in Minkowski space.

2. The matrix model for the c = 1 string theory revisited

2.1. Partition function of the Euclidean theory compactified on a circle with radius R

The c = 1 string theory (see the appendix) describes the critical behaviour of the large-N
matrix quantum mechanics (see review [1] and the references therein). The critical point is
associated with the maximum of the matrix potential. In the scaling limit, which is dominated
by dense planar graphs, the potential can be approximated by a quadratic one (with the wrong
sign), which is stabilized by imposing a cut-off wall far from the top. The relevant piece of
the matrix Hamiltonian is thus

H0 = 1
2 Tr(P 2 − M2) (2.1)

2 It is conjectured [10] that such a perturbation can lead to a target space geometry with a horizon.
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where P = −i∂/∂M and Mij is an N × N Hermitian matrix variable. The cosmological
constant µ is introduced as a ‘chemical potential’ coupled to the size of the matrix N, which
should be considered as a dynamical variable.

We will consider the Euclidean theory with periodic Euclidean time x = −it . The time
interval

β = 2πR (2.2)

can also be interpreted as inverse temperature. The matrix model describes the c = 1 string
only when β > βKT = 4π . At β = βKT the winding modes associated with the N(N − 1)

angular degrees of freedom become important and produce a Berezinski–Kosterlitz–Thouless-
like phase transition to a c = 0 string theory [11]. The angular degrees of freedom can be
interpreted as the winding modes of the string, which represent strings winding several times
around the target circle.

A sensible matrix model for β < βKT can be constructed by introducing an additional
SU(N) gauge field A(x), which projects to the sector free of winding modes [12]. The
partition function of the compactified system is

Z(µ) =
∑
N�0

e−βNZN (2.3)

where ZN is given by a functional integral with respect to the one-dimensional matrix
Hermitian fields M(x) and A(x) with periodic boundary conditions

ZN =
∫

periodic
DPDMDA e− 1

h̄
S0 . (2.4)

The action functional is

S0 = Tr
∫ β

0
(iP∇AM − H0) dx (2.5)

∇AM denotes the covariant time derivative

∇AM = ∂xM − i[A,M]. (2.6)

The gauge field can also be used to study perturbations by winding modes, with appropriately
tuned coupling constants, so that the long-range order is not destroyed. It was shown in [13]
that the winding modes couple to the moments of the SU(N) magnetic flux associated with the
gauge field A.

2.2. Chiral quantization

The analysis of the matrix model simplifies considerably if it is formulated in terms of the
chiral variables [6]

X± = M ± P√
2

(2.7)

representing N × N Hermitian matrices. The Hamiltonian in the new variables is

H0 = − 1
2 Tr(X̂+X̂− + X̂−X̂+) (2.8)

where the matrix operators X̂± obey the canonical commutation relation[
(X̂+)

i
j , (X̂−)kl

] = −iδi
l δ

k
j . (2.9)
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The partition function for fixed N is now given by a path integral with respect to the one-
dimensional Hermitian matrix fields X+(x), X−(x) and A(x), satisfying periodic boundary
conditions. The action (2.5) reads, in terms of the new fields,

S0 = Tr
∫ β

0

(
iX+∇AX− − 1

2X+X−
)

dx. (2.10)

The partition function (2.10) depends on the gauge field only through the global holonomy
factor, given by the unitary matrix

� = T̂ ei
∫ 2πR

0 A(x)dx . (2.11)

This can be seen by imposing the gauge A = 0, which can be done at the expense of replacing
the periodic boundary condition X±(β) = X±(0) by an SU(N)-twisted one

X+(β) = X+(0) X−(β) = �−1X−(0)�. (2.12)

2.3. Gauge-invariant collective excitations: momentum and winding modes

The momentum modes Vn/R of the matrix field are gauge-invariant operators with time
evolution Vn/R(t) = e−nt/RVn/R(0). Here n can be any positive or negative integer. The
spectrum of momenta is determined by the condition that the time dependence is periodic in
the imaginary direction with period 2πR. The operators satisfying these conditions are

Vn/R = e±inx/R Tr X±(x)n/R =
{

Tr X
|n|/R
+ if n > 0

Tr X
|n|/R
− if n < 0.

(2.13)

This form of the left and the right momentum modes was first suggested to our knowledge by
Jevicki [18].

As was shown in [13], the winding modes Ṽ nR are associated with the SU(N) magnetic
flux through the compactified spacetime

Ṽ nR = Tr �n (2.14)

where � is the U(N) holonomy (2.11). From the worldsheet point of view the winding
operator Ṽ nR creates a puncture with a Kosterlitz–Thouless vortex, i.e. a line of discontinuity
2πRn starting at the puncture.

2.4. The partition function as a three-matrix integral

In the A = 0 gauge the path integral with respect to the fields X±(x) is Gaussian with the
determinant of the quadratic form equal to one. Therefore it is reduced to the integral with
respect to the initial values X± = X±(0) of the action (2.10) evaluated along the classical
trajectories, which satisfy the twisted periodic boundary condition (2.12). Therefore, the
canonical partition function of the matrix model can be reformulated [6] as an ordinary matrix
integral with respect to the two Hermitian matrices X+ and X−, and the unitary matrix �:

ZN =
∫

DX+DX−d� ei Tr(X+X−−qX−�X+�−1) (2.15)

where we denoted

q = eiβ = e2π iR. (2.16)

A general perturbation by momentum modes can be introduced by changing the
homogeneous measures DX± to

[DX±] = DX± e±i Tr U±(X±) (2.17)
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where we introduced the matrix potentials

U±(X±) = R
∑
n>0

t±n Tr X
n/R
± . (2.18)

Similarly, a general perturbation by winding modes can be introduced by changing the invariant
measure D� on the group U(N) to

[D�] = D� eŨ (q1/2�)−Ũ (q−1/2�) (2.19)

where we introduced the following matrix potential:

Ũ(�) =
∑
n �=0

t̃n Tr �n. (2.20)

In the case of a generic perturbation with both momentum and winding modes, the three-
matrix model (2.15) is not integrable. However, it can be solved exactly in the case of an
arbitrary perturbation only by momentum or only by winding modes. In the following, we
will discuss in detail these two integrable cases. In both cases it is possible to integrate with
respect to the angles and the matrix partition function reduces to an eigenvalue integral.

2.5. Integration with respect to the angles

Let us consider the case of a perturbation with only momentum modes. Then the gauge field
plays the role of a Lagrange multiplier for the condition [X+,X−] = 0 and the two matrices
can be simultaneously diagonalized. Applying twice the Harish–Chandra–Itzykson–Zuber
formula we can reduce the matrix integral to an integral over the eigenvalues x±

1 , . . . , x±
N of

the two Hermitian matrices X±. We write, after rescaling the integration variables,

ZN(t) =
∫ ∞

−∞

N∏
k=1

[
dx+

k

] [
dx−

k

]
det
jk

(
eix−

j x+
k

)
det
jk

(
e−iqx−

j x+
k

)
(2.21)

where the measures are defined by

[dx±] = dx± eiU±(x±). (2.22)

Then the grand canonical partition function can be written as a Fredholm determinant

Z(µ, t) = Det(1 + e−βµK+K−) (2.23)

where

[K+f ](x−) =
∫

[dx+] eix+x−f (x+) [K−f ](x+) =
∫

[dx−] e−iqx+x−f (x−). (2.24)

3. The partition function of the non-perturbed theory

3.1. Eigenfunctions of the non-perturbed Hamiltonian

In the absence of perturbation, the partition function is given by the Fredholm determinant

Z(µ) = Det(1 + e−β(µ+H0)) (3.1)

and can be interpreted as the grand canonical finite-temperature partition function for a system
of non-interacting fermions in the inverse Gaussian potential. The Fredholm determinant
(3.1) can be computed once we know a complete set of eigenfunctions for the one-particle
Hamiltonian

H0 = − 1
2 (x̂+x̂− + x̂−x̂+). (3.2)
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The canonically conjugated operators x̂+ and x̂−
x̂+x̂− − x̂−x̂+ = −i (3.3)

are represented in the space of functions of x+ as

x̂+ = x+ x̂− = i∂x+

and in the space of functions of x− as

x̂− = x− x̂+ = −i∂x− .

Since the inverse Gaussian potential is bottomless, the spectrum of the Hamiltonian is
continuous

H0ψ
E
+ (x±) ≡ ∓i

(
x±∂x± + 1/2

)
ψE

+ (x±) = EψE
+ (x±) (E ∈ R). (3.4)

The eigenfunctions in the x±-representation, which we denote by Dirac brackets

ψE
± (x±) = 〈E|x±〉

are given by

〈E|x±〉 = 1√
π

e∓ 1
2 iφ0x

±iE− 1
2

+ (3.5)

where the phase factor φ0 = φ0(E) will be determined in a moment3. The solutions (3.5) have
a branch point at x± = 0 and are defined unambiguously only on the positive real axis. For each
energy E there are two solutions, since there are two ways to define the analytic continuation to
the negative axis. The wavefunctions relevant to our problem have large negative energies and
are supported, up to exponentially small terms due to tunnelling phenomena, by the positive
axis4. Therefore we define the analytic continuation to negative axis as

〈E| −x+〉 = 〈E|e−iπx+〉 = eπE〈E|x+〉 (x+ > 0)
(3.6)

〈E| −x−〉 = 〈E|eiπx−〉 = eπE〈E|x−〉 (x− > 0).

The functions (3.5) with E real form two orthonormal sets∫ ∞

−∞
dx±〈E|x±〉〈x±|E′〉 = δ(E − E′). (3.7)

We will also impose the bi-orthogonality condition∫∫ ∞

−∞

dx+dx−√
2π

〈E|x+〉 eix+x−〈x−|E′〉 = δ(E − E′) (3.8)

which fixes the phase φ0

eiφ0(E) =
√

1

2π
e− π

2 (E−i/2)	(iE + 1/2). (3.9)

The phase defined by (3.9) has in fact a small imaginary part, which we neglect5. This is
because the theory restricted to the Hilbert space spanned on these states is strictly speaking
not unitary due to the tunnelling phenomena across the top of the potential. In the following,
we will systematically neglect the exponentially small terms O(eπE). With this accuracy we
can write the completeness condition∫ ∞

−∞
dE〈x+|E〉〈E|x−〉 = 1√

2π
e−ix+x− (3.10)

3 The eigenfunctions (3.5) play the same role in the chiral quantization as the parabolic cylinder functions in the
standard quantization, based on the original Hamiltonian (2.1).
4 This corresponds to the theory of type I of [3].
5 The pure phase factor would be

√
cosh πE

2π
	(iE + 1/2) =

√
1 + eπE eiφ0(E).
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where the right-hand side is the kernel of the inverse Fourier transformation relating the x+

and x− representations. For real energy the phase φ0 is real (up to non-perturbative terms), but
we will analytically continue it to the whole complex plane. In this case the reality condition
means

φ0(E) = φ0(Ē). (3.11)

3.2. Cut-off prescription, density of states and free energy

To find the density of states, we need to introduce a cut-off 
 such that 
 � µ. This can be
done by putting a completely reflecting wall at distance x++x−√

2
= √

2
 from the origin. Since

the wall is completely reflecting, there is no flow of momentum through it, x+−x−√
2

= 0. Thus

the cut-off wall is equivalent to the following boundary condition at x+ = x− = √

:

ψE
+ (

√

) = ψE

− (
√


) (3.12)

on the wavefunctions (3.5). This condition is satisfied for a discrete set of energies En(n ∈ Z)

defined by

φ0(En) − En log 
 + 2πn = 0. (3.13)

From (3.13) we can find the density of the energy levels in the confined system:

ρ(E) = log 


2π
− 1

2π

dφ0(E)

dE
. (3.14)

Now we can calculate free energy F(µ,R) = logZ(µ,R) as

F(µ,R) =
∫ ∞

−∞
dEρ(E) log[1 + e−β(µ+E)] (3.15)

with the density (3.14). Integrating by parts in (3.15) and dropping out the 
-dependent part,
we get

F(µ,R) = − 1

2π

∫
dφ0(E) log(1 + e−β(µ+E)) = −R

∫ ∞

−∞
dE

φ0(E)

1 + eβ(µ+E)
. (3.16)

We close the contour of integration in the upper half plane and take the integral as a sum of
residues. This gives for the free energy

F = −i
∑

r=n+ 1
2 >0

φ0 (ir/R − µ) . (3.17)

Using the explicit form (3.9) of φ0 we can represent the free energy as a sum over pairs of
positive half-integers

F(µ,R) =
∞∑

r,s�1/2

log (µ + ir + is/R) (3.18)

which is explicitly invariant under the T-duality R → 1/R, µ → Rµ. From here it follows
that the free energy satisfies the functional equation

4 sin(∂µ/2R) sin(∂µ/2)F(µ,R) = − log µ. (3.19)

From (3.17) we can express the phase factor in terms of the free energy

φ0 = −2 sin(∂µ/2R)F(µ,R). (3.20)
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3.3. Calculation of the free energy using the E-representation of the operators x̂±

Let us now give an alternative, algebraic derivation of the free energy of the non-perturbed
theory. For this purpose we will write the canonical commutation relation (3.3) for the matrix
elements of the operators x̂± in E-representation.

The action of the operators x̂± on the wavefunctions is equivalent to a shift of the
energy by an imaginary unit (we consider the wavefunctions as analytic functions of E) and a
multiplication by a phase factor:

〈E|x̂±|x±〉 = e± 1
2 i[φ0(E∓i)−φ0(E)]〈E ∓ i|x±〉. (3.21)

As a consequence, the operators x̂± are represented by the finite-difference operators acting
in the E-space

x̂± → e∓ 1
2 iφ e∓i∂E e± 1

2 iφ. (3.22)

The Heisenberg relation (3.3) is equivalent to the condition

φ0
(
E + 1

2 i
) − φ0

(
E − 1

2 i
) = − log(−E) (3.23)

which is equivalent to the functional constraint (3.19).

4. Integrable perturbations by momentum modes

4.1. One-particle eigenfunctions and the density of states of deformed system

Now we will consider perturbations generated by momentum modes Vn/R . As we argued in
section 2.4, this can be achieved by deforming the integration measures dx± to

[dx±] = dx± exp (±iU±(x±)) U±(x±) = R
∑
k�1

t±kx
k/R
± . (4.1)

In this section, we will show that such a deformation is exactly solvable, being generated by
a system of commuting flows Hn associated with the coupling constants t±n. The associated
integrable structure is that of a constrained Toda lattice hierarchy. The method is very similar
to the standard Lax formalism of Toda theory, but we will not assume that the reader is
familiar with this subject. It is based on the possibility of describing the perturbation by vertex
operators as deformations of the E-representation of the canonical commutation relation.

The partition function of the perturbed system is given by the Fredholm determinant (2.23),
where the integration kernels (2.23) and (2.24) are defined with the deformed measures (4.1).
The deformed kernel is diagonalized by a complete orthonormal system of wavefunctions6

�E
±(x±) ∫

dx±�E±(x±)�E
± (x±) = δ(E − E′) (4.2)

which satisfy the following three conditions:
(1) they are eigenfunctions of the evolution operator relating the points x = 0 and x = β

e−βH0�E
± = e−βE�E

± (4.3)

(2) they behave at infinity as

�E
±(x±) ∼ x

±iE− 1
2± e∓ 1

2 iφ(E) eiU±(x±) (4.4)

6 As before, we understand the completeness in a weak sense, i.e. up to non-perturbative terms due to tunnelling
phenomena, which we have neglected.
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(3) they satisfy the bi-orthogonality condition (3.8)∫∫
dx+dx−√

2π
�E−(x−) eix+x−�E′

+ (x+) = δ(E − E′). (4.5)

The new eigenfunctions are not necessarily eigenvalues of the Hamiltonian H0 itself.
Indeed, the evolution operator e−βH0 acts trivially on any entire function of x

1/R
± . In particular,

condition (4.4) is compatible with condition (4.3).
Once the basis of the perturbed wavefunctions is found, the logarithm of the Fredholm

determinant can be calculated as the integral (3.15), where the new density of states is obtained
from the phase φ(E) in the asymptotics (4.4)

ρ(E) = − 1

2π

dφ

dE
. (4.6)

Therefore the phase φ(E) contains all the information about the perturbed system. It is related
to the free energy by

F = −i
∑

r�1/2

φ (ir/R − µ). (4.7)

φ(−µ) = 2 sin(h̄∂µ/2R)F(µ,R). (4.8)

4.2. Dressing operators

Now we proceed to the actual calculation of the phase φ. The method is a generalization
of the algebraic method we have used in section 3.3. First we remark that the perturbed
wavefunctions are given by the rhs of (4.4) up to factors of the form

W±(x±) = exp


iR

∑
n�1

v±nx
−n/R
±


 . (4.9)

which satisfy the second condition (4.3) and tend to 1 when x± → ∞. The unknown
coefficients vn and the phase φ are determined functions of E and the couplings tn by the third
condition (4.5).

It follows from (3.22) that the deformed wavefunction

�E
±(x±) = eiU±(x±) e∓ 1

2 iφ(E)x
±iE− 1

2± W±(x±) (4.10)

can be obtained from the bare wavefunctions (3.5) by the action of two finite-difference
operators in the E-space Ŵ+ and Ŵ−:

�E
±(x±) = 〈E|e± 1

2 iφ0Ŵ±|x±〉. (4.11)

The explicit form of the dressing operators Ŵ± is obtained by replacing x± → e∓i∂E in (4.10).
The dressing operators are unitary

Ŵ+Ŵ†
+ = W−Ŵ†

− = 1 (4.12)

since they relate two orthonormal systems of functions. Further, the bi-orthogonality condition
(4.5) is equivalent to the identity

Ŵ†
− eiφ0Ŵ+ = 1. (4.13)

The identity (4.13) means that the product Ŵ−Ŵ−1
+ does not depend on the perturbation,

which is a general property of all Toda lattice systems [5].
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4.3. Lax operators and string equation

We have seen that the partition function is expressed in terms of the phase φ(−µ). Therefore
we assume that the energy is at the Fermi level E = −µ, and consider all variables as functions
of µ instead of E. Let us denote by ω̂ the operator

ω̂ = ei∂µ (4.14)

shifting the variable µ by i. The operators ω̂ and µ satisfy the Heisenberg–Weyl commutation
relation

[ω̂, µ] = ω̂ [ω̂−1, µ] = −ω̂−1. (4.15)

Now let us consider the representation of these commutation relations in the perturbed
theory. The dressing operators W± are now exponents of a series in ω̂ with µ-dependent
coefficients

Ŵ± = eiR
∑

n�1 t±nω̂n/R

e∓ 1
2 iφ(µ) eiR

∑
n�1 v±n(µ)ω̂−n/R

. (4.16)

The operators

L+ = W+ω̂W−1
+ L− = W−ω̂−1W−1

− M+ = W+µW−1
+ M− = W−µW−1

− .

(4.17)

known as Lax and Orlov–Schulman operators satisfy the same commutation relations as the
operators ω̂ and µ

[L+,M+] = iL+ [L−,M−] = −iL−. (4.18)

The Lax operators L± represent the canonical coordinates x̂± in the basis of perturbed
wavefunctions,

〈E|e± 1
2 iφ0Ŵ±L±|x±〉 = x±〈E|e± 1

2 iφ0Ŵ±x̂±|x±〉 (4.19)

while the Orlov–Shulman operators M± represent Hamiltonian H0 = − 1
2 (x̂+x̂− + x̂−x̂+).

Therefore, the L and M operators are related also by

M+ = M− = 1
2 (L+L− + L−L+). (4.20)

The last identity is not satisfied automatically in the Toda system and represents an additional
constraint analogous to the string equations in the minimal models of 2D quantum gravity.
Relation (4.20) is proved by inserting the identity (4.13) in the bare relation for E = −µ,
satisfied by the operators (3.22). The string equation can also be written as the Heisenberg
commutation relation between the two Lax operators

[L+, L−] = −i (4.21)

which also follows directly from (3.3).
The operators M± can be expanded as an infinite series of the L-operators. Indeed, as

they act on the dressed wavefunctions as

〈E|e± 1
2 iφ0Ŵ±M±|x±〉 = ±i(x±∂x± − 1/2)�E

±(x±)

=

∑

k�1

kt±kx
k/R
± + µ +

∑
k�1

v±kx
−k/R
±


�E

±(x±). (4.22)

We can write

M± =
∑
k�1

kt±kL
k/R
± + µ +

∑
k�1

v±kL
−k/R
± . (4.23)
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In order to exploit the Lax equations (4.18) and the string equations (4.20) we need the
explicit form of the two Lax operators. It follows from (4.16) that L± can be represented as a
series of the form

L+ = e−iφ/2


ω̂ +

∑
k�1

akω̂
1−n/R


 eiφ/2

L− = eiφ/2


ω̂−1 +

∑
k�1

a−kω̂
−1+n/R


 e−iφ/2.

(4.24)

4.4. Integrable flows

Let us identify the integrable flows associated with the coupling constants tn. From definition
(4.17) we have

∂tnL± = [Hn,L±] (4.25)

where the operators Hn are related to the dressing operators as

Hn = (
∂tnW+

)
W−1

+ = (
∂tnW−

)
W−1

− . (4.26)

The two representations of the flows Hn are equivalent by virtue of relations (4.12) and (4.13).
A more explicit expression in terms of the Lax operators is derived by the following standard
argument. Let us consider the case n > 0. From the explicit form of the dressing operators it is
clear that Hn = W+ω̂

n/RW−1
+ + negative powers of ω̂1/R . The variation of tn will change only

the coefficients of the expansions (4.24) of the Lax operators, preserving their general form.
But it is clear that if the expansion of Hn contained negative powers of ω̂1/R , its commutator
with L− would create extra powers ω̂−1−k/R . Therefore

H±n = (
L

n/R
±

)
>
<

+ 1
2

(
L

n/R
±

)
0 n > 0 (4.27)

where the symbol ( )>
<

means the positive (negative) parts of the series in the shift operator
ω̂1/R and ( )0 means the constant part. By a similar argument one shows that the Lax equations
(4.25) are equivalent to the zero-curvature conditions

∂tmHn − ∂tnHm − [Hm,Hn] = 0. (4.28)

Equations (4.25) and (4.27) imply that the perturbed theory possesses the Toda lattice
integrable structure. The Toda structure implies an infinite hierarchy of PDEs for the
coefficients vn of the dressing operators, the first of which is the Toda equation for the
phase φ(µ) ≡ φ(E = −µ)

i
∂

∂t1

∂

∂t−1
φ(µ) = eiφ(µ)−iφ(µ−i/R) − eiφ(µ+i/R)−iφ(µ). (4.29)

The uniqueness of the solution is assured by appropriate boundary conditions [13], which are
equivalent to the constraint (4.21).

4.5. Representation in terms of a bosonic field

The momentum modes can be described as the oscillator modes of a bosonic field ϕ(x+, x−) =
ϕ+(x+) + ϕ−(x−). The bosonization formula is

�
E=−µ−i/2
± (x±) = Z−1 e±iϕ±(x±) · Z (4.30)
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where Z is the partition function and

ϕ±(x±) = R
∑
k�1

tkx
k/R
± +

1

R
∂µ + µ log x± − R

∑
k�1

1

k
x

−k/R
±

∂

∂tk
. (4.31)

Then by (4.22) the operators M± are represented by the currents x±∂±ϕ:

M
†
±�E

± (x±)|E=−µ−i/2 = Z−1x±∂±ϕ · Z. (4.32)

4.6. The dispersionless (quasiclassical) limit

Let us reintroduce the Planck constant by replacing µ → µ/h̄ and consider the quasiclassical
limit h̄ → 0. In this limit the integrable structure described above reduces to the dispersionless
Toda hierarchy [5, 19, 20], where the operators µ and ω̂ can be considered as a pair of classical
canonical variables with Poisson bracket:

{ω,µ} = ω. (4.33)

Similarly, all operators become c-functions of these variables. The Lax operators can be
identified with the classical phase space coordinates x±, which satisfy

{x+, x−} = 1. (4.34)

The two functions x±(ω,E) define the classical phase space trajectories as functions of the
proper time variable τ = log ω.

The shape of the Fermi sea is determined by the classical trajectory corresponding to the
Fermi level E = −µ. In the non-perturbed system the classical trajectory is

x+(ω) = √
µω x−(ω) = √

µω−1 (4.35)

and the Fermi sea has a hyperbolic shape

x+x− = µ. (4.36)

In the perturbed theory the classical trajectories are of the form

x± = L±(ω,µ) (4.37)

where the functions L± are of the form

L±(ω,µ) = e
1
2 ∂µφω±1


1 +

∑
k�1

a±k(µ)ω∓k/R


 . (4.38)

The flows Hn become Hamiltonians for the evolution along the ‘times’ tn. The unitary
operators W± become a pair of canonical transformations between the variables ω,µ and
L±,M±. Their generating functions are given by the expectation values S± = Z−1ϕ±(x±) ·Z
of the chiral components of the bosonic field φ:

S± = ±R
∑
k�1

t±kx
k/R
± + µ log x± − 1

2
φ ± R

∑
k�1

1

k
vkx

−k/R
± (4.39)

where vk = ∂F/∂tk. The differential of the function S± is

dS± = M±d log x± + log ω dµ + R
∑
n �=0

Hn dtn. (4.40)

If we consider the coordinate ω as a function of either x+ or x−, then

ω = e∂µS+(x+) = e∂µS−(x−). (4.41)
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The classical string equation

x+x− = M+ = M− (4.42)

can be written, using the expansion (4.23) of M±, as

x+x− =
∑
k�1

ktkx
k/R
+ + µ +

∑
k�1

vkx
−k/R
+

(4.43)
x+x− =

∑
k�1

kt−kx
k/R
− + µ +

∑
k�1

v−kx
−k/R
− .

The first of these expansions is convergent for sufficiently large x+ and the second one for
sufficiently large x−. Comparing the two equations one can extract the form of the Fermi
surface. Technically this is done as follows [17]. First, note that if all t±k with k > n vanish,
the sum in (4.38) can be restricted to k � n. Then it is enough to substitute the expressions
(4.38) in the profile equations (4.43) and compare the coefficients in front of ω±k/R .

The two expansions (4.43) can be combined into a single equation

x−x− −
∑
k �=0

ktkHk(ω) = µ (4.44)

where

H±k(ω) = [
L

k/R
± (ω)

]
>
<

+ 1
2

[
L

k/R
+ (ω)

]
0 (k > 0). (4.45)

The left-hand side can be interpreted as the Hamiltonian for the perturbed system. It defines
the profile of the perturbed Fermi sea, which is a deformation of the hyperbole (4.36).

4.7. One-point correlators in the dispersionless limit

It follows from log ω = ∂µS±(x±) that the µ-derivative of the one-point correlators〈
Tr X

n/R
±

〉 = ∂F
∂tn

(4.46)

is given by the contour integrals
∂2F

∂µ∂t±n

= 1

2π i

∮
dω1/R[L±(ω)]|n|/R (n � 1) (4.47)

where the closed contour of integration in the variable ω1/R goes along the arc between
ω = e−iπR and ω = eiπR . (Note that the integrand is expanded in Laurent series in ω1/R .)

4.8. Example: sine-Gordon field coupled to 2D gravity

The simplest nontrivial string theory with time-dependent background is the sine-Gordon
theory coupled to gravity known also as sine-Liouville theory. It is obtained by perturbing
with the lowest couplings t1 and t−1. In this case

x± = e
1
2 ∂µφω±1

(
1 + a±1ω

∓ 1
R

)
(4.48)

and (4.43) gives

µe−∂µφ −
(

1 − 1

R

)
t1t−1 e−(2− 1

R
)∂µφ = 1 a±1 = t∓1 e− 1

2 (2− 1
R

)∂µφ. (4.49)

The first equation is an algebraic equation for the susceptibility

u0 = ∂2
µF = −R∂µφ.

It was first found (for the T-dual theory) in [13]. This algebraic equation resumes the
perturbative expansion found in [21]. Equation (4.48) with a± given in (4.49) was first
found in [16] by integrating the Hirota equations for the Toda hierarchy with the boundary
condition given by the non-perturbed free energy (3.18).
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5. Integrable perturbations by winding modes

5.1. The partition function as integral over the U(N) group

Let us consider a perturbation of the c = 1 string theory by only winding modes. The
relevant variable in this case is the gauge field A(x) and the matrix model (2.4), which can
be viewed as a two-dimensional gauge theory defined on the disc having as a boundary the
compactified Euclidean time interval. The only nontrivial degree of freedom in such a theory
is the holonomy factor around the circle (2.11). The canonical partition function is given by
the U(N) integral

ZN =
∫

[D�]

|q−1/2� ⊗ I − q1/2I × �| (5.1)

where I is the unit N × N matrix. The integrand depends only on the eigenvalues z1, . . . , zN

of the unitary matrix � and the partition function becomes

ZN(t̃n) = |q1/2 − q−1/2|−N

∮ N∏
k=1

∮
[dzk]

2π izk

∏
j<k

∣∣∣∣ zj − zk

q−1/2zj − q1/2zk

∣∣∣∣
2

. (5.2)

where the integration goes along the unit circle |z| = 1 with measure

[dz] = dz eŨ (q
1
2 z)−Ũ (q

− 1
2 z). (5.3)

This representation of the partition function was studied (for the non-perturbed theory) by
Boulatov and Kazakov [12]. Note that the absolute value can be abandoned, since the
integrand is homogeneous.

The grand canonical partition function can be written as the absolute value of a Fredholm
determinant

Z(µ, tn) = ∣∣Det(1 + q iµK̂)
∣∣ (5.4)

where the Fredholm kernel is defined by the contour integral

(K̂f )(z) = −
∮

[dz]

2π i

f (z′)
q1/2z − q−1/2z′ . (5.5)

The integral has poles when zi = qzj and should be evaluated by adopting a prescription for
surrounding the poles. The prescription used in [12] is to add a small imaginary part to R so
that |q| < 1. In the case of real q ∈ [0, 1) the partition function was studied by Gaudin [22].

5.2. Evaluation of the partition function of the non-perturbed theory

Boulatov and Kazakov showed in [12] that the prescription for the contour integration gives
the same result as (3.18) for the Fredholm determinant (5.4), up to non-perturbative terms
O(e−πµ). Here we recall their calculation. The integration kernel (5.5) acts on the monomials
zn as

Kzn =
{
qn+ 1

2 zn if n � 0
0 if n < 0

(5.6)

and the Fredholm determinant (5.4) reads

Z(µ) =
∏
r>0

(1 + q iµ+r ).

The free energy then is equal to an infinite sum

F(µ) =
∑
n�0

log(1 + q iµ+n+1/2) =
∑
m�1

(−)mq imµ

m

1

qm/2 − q−m/2
. (5.7)
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The last sum is the result and can be written as the integral

F(µ) =
∫
C

dy

y

q iµy

4 sinh(yR) sinh(y)
. (5.8)

along a contour C circling around the poles y = in, n > 0 only. If |q| < 1, then C goes from
−∞ to 0 and then up the imaginary axis to i∞.

Note that if we close the contour around the poles of sinh πRy, then the result will be the
sum over the residues k = inR (n > 0) which can be written as the partition function for the
dual radius R̃ = 1/R.

5.3. Toda integrable structure

The Fredholm determinant (5.4) with non-homogeneous measure (5.3) can be represented as
the Fock expectation value in a theory of chiral fermions defined on the unit circle [13]. The
deformations by winding modes are introduced as Bogolyubov transformations of the left and
right fermionic vacua and the partition function was identified as a τ -function of the Toda
lattice hierarchy.

As a consequence, the free energy satisfies an infinite hierarchy of PDE with the Toda
‘times’ t̃n. The first one is the Toda equation dual to the equation (4.29):

i
∂

∂t̃1

∂

∂t̃−1
φ̃(µ) = eiφ̃(µ)−iφ̃(µ−i) − eiφ̃(µ+i)−iφ̃(µ) (5.9)

where

φ̃(µ) = 2 sin(∂µ/2)F(µ,R). (5.10)

Using the scaling relation given in the appendix, one can reduce (5.9) to an ordinary differential
equation, which should be solved with initial condition (5.8). In the quasi-classical (genus
zero) limit, this differential equation can be integrated to an algebraic equation for the string
susceptibility u0 = ∂µφ̃

µe
1
R

∂µφ̃ + t̃1 t̃−1(R − 1) e
2−R
R

∂µφ̃ = 1. (5.11)

The one- and two-point correlators were calculated by Alexandrov and Kazakov from the
higher equations of the Toda hierarchy [16]. These results were later confirmed in [17] using
the Lax formalism of the constrained Toda system.

5.4. Lax operators and string equation

We will consider the potential Ũ(z) in the measure (5.3) as the value on the unit circle z̄z = 1
of the potential

Ũ(z, z̄) =
∑
n�0

(t̃nz
n + t̃−nz̄

n) (5.12)

defined in the whole complex plane. Let us assume that the spectral variables z and z̄ are
represented (in some sense) by a pair of Lax operators of the form

L = e− 1
2 iφ̃ω̂


1 +

∑
k�1

ukω̂
1−k


 e

1
2 iφ̃ L̄ = e

1
2 iφ̃ ω̂−1


1 +

∑
k�1

ukω̂
1−k


 e− 1

2 iφ̃ (5.13)

where the phase φ̃ is related to the free energy by

φ̃(µ) = −i[F(µ + i/2) − F(µ − i/2)]. (5.14)
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In order to find the constraint satisfied by L and L̄, we consider the non-perturbed theory,
for which the expressions in the parentheses are equal to 1. The functional equation (3.19)
means that the bare phase φ̃0 satisfies

φ̃0(µ + i/R) − φ̃0(µ − i/R) = −i log µ. (5.15)

In the case of no perturbation, this is equivalent to the algebraic relations

L1/RL̄1/R + L̄1/RL1/R = µ (5.16)

and

[L1/R, L̄1/R] = i. (5.17)

The second identity is invariant with respect to the dressing procedure and therefore is satisfied
by the general Lax operators (5.13). This is the string equation for the constrained Toda system.

5.5. Quasiclassical limit and relation with the conformal map problem

In the dispersionless limit µ → ∞ the two Lax operators define a smooth closed curve γ in
the complex plane, whose equation is written in a parametric form as

z = L(ω) z̄ = L̄(ω) (|ω| = 1). (5.18)

For example, in the case when only t̃1 and t̃−1 are nonzero, the explicit form of the curve γ is

z = e
1
2 ∂µφ̃ω

(
1 + t̃−1 e

2−R
2R

∂µφ̃ω−1)R
z̄ = e− 1

2 ∂µφ̃ω−1(1 + t̃1 e
2−R
2R

∂µφ̃ω
)R

. (5.19)

Assuming that the couplings t̃n and t̃−n are complex conjugate, the map (5.18) can be
extended to a conformal map from the exterior of the unit disc ω < 1 to a connected domain
D with the topology of a disc containing the point z = ∞ and bounded by the curve γ . The
couplings t̃n (n �= 0) and µ can be thought of as a set of coordinates in the space of closed
curves. The relation between the conformal maps and the dispersionless Toda hierarchy was
studied recently in a series of papers [23–25].

6. Conclusion

In this paper, we explained how the perturbations of the compactified c = 1 string theory by
momentum or winding modes are described by integrable deformations of a gauged matrix
model on a circle. The momentum and winding modes are associated with the collective
excitations of the matter and gauge fields. The deformed system is described by a constrained
Toda lattice hierarchy. The Lax formalism for the Toda lattice hierarchy allows us to calculate
explicitly the free energy and the correlation functions of the electric or magnetic operators
for any genus. In particular, the partition function is a τ -function of the Toda lattice hierarchy.

The integrability takes place only in the grand canonical ensemble, in which the size N is a
dynamical variable and the string interaction constant is controlled by the chemical potential µ.
The partition function is a Fredholm determinant, and not a usual determinant as in the case
of the open matrix chains for the c < 1 string theories.

It is not likely that the integrability is conserved for perturbations with both momentum and
winding modes. Nevertheless, the calculation of the correlation functions of the momentum
modes in the presence of a perturbation mode (or vice versa) seems to be performable albeit
very difficult. This calculation might help check the hypothesis (related to the FZZ conjecture
[10]) that a strong perturbation by winding modes can lead to a curved background with
Euclidean horizon [13].
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Another problem, also related to the [10] conjecture, is to find the limit µ/t1t−1 → 0 of
the matrix model, which is relevant to the sine-Liouville string theory. This limit seems to be
subtle because at small µ the non-perturbative effects can enter into the game. In any case,
the µ → 0 limit of the correlators of the matrix model does not seem to reproduce the results
obtained in the sine-Liouville theory [10, 26].

Finally, it would be very interesting to understand the origin of integrability from the
point of view of the worldsheet string theory.
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Appendix. Momentum and winding modes in the c = 1 Euclidean string theory

In this section, we will recall briefly the worldsheet description of the c = 1 Euclidean string
theory with compact target space. The elementary excitations in this theory are closed surfaces,
or string worldsheets, embedded in a circle of radius R. An embedded surface is defined by
metric tensor gab(σ ) (a, b = 1, 2) and the position x(σ) in the target space as functions of the
local coordinates σ = {σ1, σ2}. The free energy of the string theory is given by the functional
integral over all connected surfaces

1

h̄2 F(R,µ, h̄) =
∫

DgabDx e−S(gab,x) (A.1)

with a weight given by the the Polyakov action

S(gab, x) = 1

4π

∫
worldsheet

d2σ
√

detg[gab∂ax∂bx + 4πµ + R̂(2) log h̄] (A.2)

where R̂ is the local curvature associated with the metric gab. The parameter µ is the
cosmological constant, coupled to the area of the worldsheet, and h̄ is the string coupling
constant, which is associated with the processes of splitting and joining of closed strings. By
the Euler theorem the global curvature is related to the genus h of the worldsheet as

1

4π

∫
d2σ

√
detgR̂(2) = 2 − 2h (A.3)

and one can write the free energy as a series

F(R, g) =
∑
h�0

h̄2hF (h)(R,µ). (A.4)

In the conformal gauge gab = e−2φ(σ )δab, the conformal factor φ becomes a dynamical
field due to the conformal anomaly, and the worldsheet action becomes essentially a c = 1
conformal field theory coupled to a Liouville field

S = 1

4π

∫
worldsheet

d2σ [(∂x)2 + (∂φ)2 + µebφ + R̂(2)(log h̄ + Qφ) + ghosts]. (A.5)

The background charge Q and the exponent b of the Liouville field are determined by the
requirement that the total conformal anomaly vanishes

cmatter + cLiouville + cghosts = 1 + (1 + 6Q2) − 26 = 0 (A.6)
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and that the perturbation due to the cosmological term µebφ is marginal

b(2Q − b)

4
= 1. (A.7)

These two conditions give

Q = −2 b = −2. (A.8)

(The value Q = 2 does not lead to a sensible classical limit.) The invariance of the action
with respect to shifts φ → φ + φ0 implies that the free energy depends on µ and h̄ through the
dimensionless combination µh̄, which is the statement of the double scaling limit in the c = 1
string theory. Therefore we are free to choose h̄ = 1 and write the genus expansion (A.4) as
an expansion in 1/µ2.

The primary operators associated with the matter field x(σ) are the vertex operators
Ve(σ ) ∼ e−iex(σ ) and the Kosterlitz–Thouless vortices Ṽm(σ ). The operator Vm(σ) is
associated with a discontinuity 2πm of the field x around the point σ on the worldsheet.
We call e and m electric and magnetic charges, in analogy with the Coulomb gas on the
plane. The electric and magnetic charges should satisfy the Dirac condition em = 2π×
integer. From the point of view of the compactified string theory observables, the electric and
magnetic charges are the momentum and winding numbers, correspondingly. The spectrum
of the electric and magnetic charges for a periodic target space x + 2πR ≡ x is

e = n/R m = nR (n ∈ Z). (A.9)

If we write the position field x as a sum of a holomorphic and an antiholomorphic part,
x = xR + xL, then the Kosterlitz–Thouless vortices are described by the vertex operators for
the dual field x̃ = xR − xL, whose target space is the circle of radius 1/R. When integrated
over the worldsheet, these operators should be accompanied by nontrivial Liouville factors
compensating their anomalous dimensions. The integrated operators have the form

Ve ∼
∫

d2σ e−iex e(e−2)φ Ṽm ∼
∫

d2σ e−imx̃ e(m−2)φ. (A.10)

The Liouville exponents are determined by the condition that the integrands are densities.
We are interested in deformations of the string theory obtained by allowing electric charges

e = n/R with fugacities tn and magnetic charges m = nR with fugacities t̃n. This is achieved
by adding to the action (A.5) the perturbation term

δS =
∑
n �=0

(tnVn/R + t̃nṼnR). (A.11)

The translational invariance of the functional measure Dφ yields the following Ward
identity for the free energy

−2h̄
∂F
∂h̄

− 2µ
∂F
∂µ

+
∑
n �=0

(nR − 2) tn
∂F
∂tn

+
∑
n �=0

( n

R
− 2

)
t̃n

∂F
∂t̃n

= 0. (A.12)

This means that the couplings tn, t̃n and the string coupling h̄ scale with respect to the
cosmological coupling µ

tn ∼ µ1− 1
2 |n|/R t̃n ∼ µ1− 1

2 R|n| h̄ ∼ µ−1. (A.13)

The T-duality symmetry of the original theory

x ↔ x̃ R → 1/R µ → µ/R (A.14)

holds for the perturbed theory if one also exchanges the couplings as tn ↔ t̃n (up to a rescaling
by an R-dependent factor).
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In the perturbation (A.11) we should retain only the relevant charges |e| < 2/R and
|m| < 2R. However, the correlation functions of a finite number of irrelevant operators are
perfectly meaningful. The interesting phase of the deformed theory, which can be thought of
as Coulomb gas coupled to quantum gravity, is the plasma phase, where the fugacities of the
charges are tuned so that the Debye length is of the order of the size of the 2D universe.
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